AFRICAN HERP NEWS
No. 32 FEBRUARY 2001

CONTENTS

EDITORIAL ___ 1

SHORT COMMUNICATIONS
SENTER, P. Misconceptions about snakes ___________________ 2

NATURAL HISTORY NOTES
BARTS, M. Pachydactylus haackei __ 9
BARTS, M. Pachydactylus punctatus __ 10
LICTRA, J. T. Homopus signatus signatus ____________________________________ 12
LICTRA, J. T. Chersina angulata __ 14
LICTRA, J. T. Homopus signatus signatus ____________________________________ 14
LOEHR, V.J.T. & SCHMALZ, M. Homopus signatus cafer ________________________ 16
LOEHR, V.J.T. Homopus signatus signatus ____________________________________ 17
SENTER, P. Afrovatrix anoscopy __ 18
BOYCOTT, R. Lampropilis sordiduus __ 19
VAN WYK, J.C.P. Kassina senegalensis ______________________________________ 21

GEOGRAPHICAL DISTRIBUTION
BROADLEY, DG. Monopeltis sphensorhynchus __ 23
HOFFMAN, D. & VAN DER BRINK, H. Pelusios subniger subniger ________________________ 24
PIETERSEN, D. & PIETERSEN, E. Dasyplectis medici medici ___________________________ 25

RECENT AFRICAN HERPETOLOGICAL LITERATURE __________ 26

HERPETOLOGICAL BOOKS ____________________________________ 31

PRESS RELEASES __ 33

HAA FINANCIAL STATEMENTS ____________________________________ 39

ISSN 1017-6187

NEWSLETTER OF THE
HERPETOLOGICAL ASSOCIATION OF AFRICA

February 2001
EDITORIAL

Herewith the first issue of African Herp News for the New Year. I trust that 2001 has gotten off to go a good start for each and every one of you.

In the previous issue of the newsletter (Vol 31) you will hopefully have made note of the HAA Conference announcement. It is all go from here and the 6th HAA Symposium will be held in Stellenbosch from the 9-12 September 2001. The symposium is being organized by the Department of Zoology and the Department of Nature Conservation at the University of Stellenbosch. Within this volume of the newsletter (as a loose flyer) is the second conference announcement. Please read through this carefully and take note of the important deadlines. Pre-registration forms must be submitted to the Conference organizers by 30th April 2001. Application forms can be submitted electronically or by fax (see details on form). Abstracts are due by the 31st May and full payment for the conference is due by 30th June, 2001. A full conference programme is envisaged with some fun events, including a wine tour and a sheep/crocodile spit banquet. Please make every effort to attend the symposium. Spread the word as the more the merrier! And while still on the topic of the symposium: I hereby invite you to send nominations for individuals who have made an “Exceptional Contribution to African Herpetology”. Nominations can be sent to the Chair, via either standard mail or e-mail. (for addresses see inside front cover).

Please note that due to increasing production and postage costs, HAA membership fees will be increased as of the 1st April 2001. Please see the back inside cover for further details.

Good news for authors contributing articles to the African Journal of Herpetology – the number of free reprints for authors has increased from 10 to 25.

A special thanks to all those who have contributed to this issue of the newsletter. Keep the articles/news coming and we will keep the newsletters flowing!

I look forward to seeing you all at the symposium.

Alison Leslie
Chair and Newsletter Editor.
SHORT COMMUNICATIONS

Colloquial names for and common misconceptions about snakes in Liberia

Phil Senter

Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115 U.S.A. (E-mail: penter@niu.edu)

When one uses local help in the collection or study of wildlife, one needs to be able to communicate with one’s assistants. It therefore behooves one to learn the local names of the creatures with which one is working. Knowledge of common local misconceptions about indigenous wildlife is also useful, since this enables the researcher to understand certain attitudes toward wildlife, which the researcher might otherwise find incomprehensible. For example, if a Liberian field assistant were to claim to have found a “two-headed snake”, it would be useful for the researcher to know that the assistant is speaking not of a mutant individual but of any of several burrowing species with a blunt, headlike tail. It would be of further use to know that the researcher may have to collect the specimen without help, since the assistant may be afraid to approach a snake which is commonly presumed to be capable of delivering a venomous bite from either end.

From April through December 1984, and from January 1986 through July 1989, I observed and collected scores of live and dead Liberian snakes in order to study aspects of their natural history (e.g. Senter, 1998, 1999). During this time, I also learned local names for and common misconceptions about Liberian snakes. Much of this was learned from members of the Mano and Gio tribes of Nimba County, Liberia, since this is where I lived in 1984 and from June through August of 1986 - 1989. Unless otherwise noted below, the colloquial English names for and misconceptions about Liberian snakes listed here, are those of the Mano and Gio. However, as noted below, many of these snake names and misconceptions are more widespread in Liberia, as I learned through contact with individuals residing in all corners of the country, mostly during my residence in Monrovia, Montserrat County, during September through May of 1986 - 1989.

Common local misconceptions about particular species of snake are included in the appropriate spots in the lexicon below. Capitalized English snake names not in quotes are common names given by Cansdale (1961).

Liberian English snake lexicon

“Black Snake” – This term refers specifically to Naja melanoleuca (Black Cobra) and N. nigricollis (Black-Necked or Spitting Cobra). Though the venom-spitting habit of N. nigricollis might seem to justify use of a different colloquial name to distinguish it from its non-spitting cousin, no such distinguishing name exists. Pitman (1974) records a similar lack of local vernacular distinction between these two species in Uganda.

Interestingly, the colloquial name “Black Snake” is understood to refer only to Naja spp., and to exclude several other local black or off-black snake species, e.g. aparallactines, Mecysma spp., Atractaspis spp., and black phases of Gymnophis mokopa and Boiga dendrophila. If confusion exists as to which species of snake is referred to, the local will generally specify whether or not the black snake in question is the one “that makes its head [or neck] flat”.

“Boa Constrictor” – Throughout Liberia, this term refers to Python sebae (African or Rock Python) or P. regius (Royal Python). Such use by Liberians of the name of an animal from the Western Hemisphere to refer to a native Liberian animal is quite common. For example, civets and genets (Viverridae) are colloquially known as “raccoons” in Liberia, the greater cane rat (Thryonomys swinderianus) is called “groundhog”, the Gambian pouched rat (Cricetomys gambianus) is called “opossum”, anteelope are called “deer”, the lizard-buzzard (Kapferola monogrammica) is called “chicken hawk”, crocodiles are called “alligators”, and the Nile monitor (Varanus niloticus) is called “iguana”. This is probably due to the linguistic influence of the Liberian nation’s 19th-century founders, who brought from the United States an American English vocabulary.

Often, the researcher’s ear must be attuned to the Liberian accent in order to understand that the term “Boa Constrictor” is being used. Depending on the speaker, the term may sound to foreign ears like “Bo Constructor” or “Bo Ghee Skrekaw”.

Interestingly, no distinction is made between P. sebae and P. regius in Liberian English, although in the Gio language they may be respectively distinguished as the “red python” and “black python”. The Mano and Gio languages have no words for colors other than red, black, and white. Therefore, brown objects are considered “red” and dark-colored objects “black”; hence the Gio-language names of the pythons.

P. sebae is commonly alleged to butt when angry. In my experience, however, it strikes when angry, and I have never known one to engage in butting behavior for any reason.
Local descriptions of *P. sebae*'s prey-capture method are often fanciful. Members of this species are commonly alleged to first butt a prey item to knock it unconscious, then squeeze the prey to break all its bones, then spit all over the prey animal to make it slippery enough to swallow easily. Strange as this description may seem, each of its components has some basis in reality. A snake’s strike could easily be mistaken for butting (though one wonders why this is the case only in the python). To the casual observer, bone-breaking seems a reasonable function for constriction. *P. sebae* often flick the tongue all over a prey item’s body before swallowing (pers. obs.), and the movement of the black tongue’s pale tip bears a certain resemblance to flying spittle.

Many Liberians believe that non-venomous snakes have no teeth. At least one person has explained to me that the python’s need to lubricate its prey before swallowing is due to its lack of teeth; since a toothless animal cannot chew, it must swallow its prey whole, and must lubricate it in order to facilitate this task.

“Cassava Snake” – Liberians all across the country use this term to refer to *Bitis gabonica* (Gaboon Viper) and *B. nasicornis* (Rhinoceros Viper). Usually no distinction is made between the two. According to Cansdale (1961) and Pitman (1974), these two snakes go by the same vernacular names in Ghana and Uganda also. However, in the Gio language, *B. gabonica* may be specifically referred to as the “red cassava-snake” and *B. nasicornis* as the “black cassava-snake” (cf. Gio names for pythons).

The name for the brown color phase of *Boiga blandingii* (Blanding’s Tree Snake) in the Mano language is literally translated “up cassava-snake”, a reference to its arboreal habit. I have also heard this color phase called “Cassava Snake” in English. However, the English term “Cassava Snake” is usually understood to mean *Bitis* sp. and not *B. blandingii*.

“Gôi” – This is the Mano name for the black phase of *Boiga blandingii* (Blanding’s Tree Snake). Neither color phase has a colloquial English name. I have included “Gôi” here to emphasize that the Mano consider these two color phases separate species.

“Green Mamba” – Liberians across the country use this term only for *Dendroaspis viridis* (Hallowell’s Green Mamba), and distinguish it easily from other green snakes by its plaited-looking tail. Other green snakes in Liberia lack specific colloquial names.

“Green snake” – This term is listed in lower case letters because it refers to snakes of a certain color, not a certain type. I have included “green snake” in the lexicon because it may be useful to the researcher to know that Liberians commonly refer to *Pseudempsis philippinii* (Olive Sand Snake) as a green snake, though to the foreign eye its color is olive-brown.

“Snake With No Head and No Tail” – This is an alternate term for the snakes known as “Two-Headed Snake” (see below). A similar term is also applied to *Typhlops* in Ghana (Cansdale, 1961).

“Two-Headed Snake” – This term refers to any of several fossorial species in which the tail is blunt and is commonly mistaken for a second head: *Typhlops* spp. (Blind Snakes), *Calabaria reinhardtii* (Calabar Ground Python), *Amblyodipsas unicolor*, and *Atractaspis* spp. (Burrowing Vipers). Many individuals insist that all these species are venomous and can bite with either end. Cansdale (1961) notes that the belief that these snakes are venomous (for *Typhlops* spp., at least) is widespread in both western and eastern Africa. This may be due to the fact that the harmless *Typhlops*, *Calabaria*, and *Amblyodipsas* share the same local name as dangerously-venomous *Atractaspis*.

“Water Snake” – This term refers to *Aponotophis ananosus* (Brown Water Snake) and *Grypsia smithii* (Smyth’s Water Snake). According to the Mano and Gio, a bite from a water snake is beneficial, since it magically prevents the bitten human from being bitten by any other snake - of any species - for the rest of that person’s life. I have heard this myth applied only to *A. ananosus*. Alas, I know from personal experience that it is true of neither species.

“Yard Snake” – This term refers to *Causus maculatus* (Night Adder).

No Colloquial Name – Many Liberian snakes have no colloquial English name, and to my knowledge lack Mano and Gio names also. These include *Natriciteres variocincta*, *Boaedon lineatus* (West African House Snake), *Meleagris* spp. (File Snakes), *Gonyoscephalus* spp., *Bothriechis melanurus* (Red-Lined Snake), *Dasyteltis* spp. (Egg-Eating Snakes), *Hapalophis smaragdinus* (Emerald Snake), *Philothamnus* spp., *Pseudempsis philippinii* (Olive Sand Snake), *Thelotornis kirtlandii* (Twig Snake), *Thamnophis occidentalis* (Black Tree Snake), *Aparallactis* spp., at least) share the same local name as dangerously-venomous *Atractaspis*.

Miscellaneous misconceptions

The researcher in Liberia must be wary of herpetological information gleaned from expatriates from the United States. Prevalent herpetological misconceptions of Americans in Liberia include the beliefs that (1) snakes always travel in two’s, (2) pythons are poisonous, (3) poisonous snakes all have...
vertical pupils and triangular heads, whereas nonpoisonous snakes do not. (4) all vipers have a V-shaped mark on the head (V for “viper”), and (5) a black snake without a spread hood is not a cobra, since cobras’ hoods are always spread. The fourth misconception above appears to have originated with the observation that *Causus macedoni*, which has a V-shaped mark on its head, is a viper. The fifth misconception is responsible for the common American habit of identifying *Naja melanoleuca* as a species of *Pseudocobra*. Americans in Liberia are also notorious for identifying any green snake as a mamba. Interestingly, though misconception number three above (and perhaps number one) is an imported myth from North America, the others appear to be specific to the American population in Liberia. Given all this, an American expatriate’s identification of a Liberian snake, or his insistence that a given snake is venomous, must be treated with caution.

Many Americans in Liberia have also told me of a snake which the locals supposedly call “Two-Step Snake” because a bitten person dies after taking two steps. According to some, the bitten person must avoid taking the second step in order to remain alive. This myth is interesting, and its prevalence among Americans in Liberia is noteworthy. However, the myth seems to be specific to the American mind, since I have never heard a Liberian refer to a “Two-Step Snake”, nor to the effectiveness of standing still after being bitten by any sort of poisonous snake.

Many Liberians believe that skinks (Scincidae) are capable of delivering a venomous bite. Though skinks are not snakes, I include this misconception here because it will probably be useful to the herpetologist in Liberia.

Acknowledgements

I thank the scores of people who taught me local names and contributed snaky lore during my stay in Liberia. Edwin Gbato of Zolowi, Nimba County and Peter (whose last name has been lost) of Old Yekpe, Nimba County, were particularly helpful. I must also acknowledge certain Southern Baptist missionaries from all across Liberia, who collected snake names in tribal languages for me. Though the lists of these names were accidentally left in Yekpe in 1989, and the information (and names of those who collected it) is therefore lost, the efforts of these folks deserve thanks.

References

REPTILIA
SAURIA

GEKKONIDAE

Pachydactylus haackei

Haacke's Thick-toed Gecko

REPRODUCTION

Two females from the vicinity of Grünau (2718Cb), 26 Karasburg district, Namibia, have been kept in a terrarium in Berlin, Germany, since 1994. In 1998 a male from Namibia without a known locality was added. The terrarium has a floor cover of fine sand and leaning sandstone flakes and a cork tube provides a retreat. It is illuminated by a neon tube and a spotlight.

The first batch of eggs was found glued to the inside of the upper third of the cork tube on 5 July, (northern hemisphere summer) 1998. The tube with the pair of eggs was transferred to a second terrarium, where they were kept at 26 - 28° C during the day and 18 - 22° C at night, until the young geckos hatched after 91 and 93 days, respectively. No further eggs were laid during that season.

The next batch of two eggs was stuck to the back wall of the terrarium near the mounting of the spot light on 20 March, 1999. They measured (length x breadth) at 16.3 x 12.7 mm and 14.9 x 12.7 mm respectively, were kept at 28 - 30° C by day and 25 - 27° C by night and hatched after 80 and 84 days. The hatchlings measurements were a) SVL = 34 mm, TL = 32 mm and b) SVL = 30 mm, TL = 27 mm. No further eggs were laid during that season. It appears as if their reproductive cycle has been adjusted to that of the northern hemisphere.

During the current season, 2000, the second female started laying on March 30, then on May 6 and a single egg on June 26. Of these the first pair was too close to the light fitting and overheated. The second pair could not be measured, as they were stuck to the inside of the cork tube. The three other eggs were measured at 15.3 x 15.3 mm, 16.5 x 16.0 mm and 16.0 x 15.5 mm respectively, but were later damaged. The two from inside the cork tube hatched on 26 and 27 July, after 81 and 82 days, respectively. The hatchlings measurements were a) SVL = 35.0, TL = 28.0 mm and b) SVL = 34.0, TL = 28.0 mm. Their measurements were rechecked on 24th October, i.e. three months later and were as follows: a) SVL = 45.6mm, TL = 44.8mm and b) SVL = 50.1mm, TL = 49.8mm. The female was again gravid at the end of July.
FitzSimons (1943) made the apparently unusual statement that *P. namaquensis* layed eggs by “affixing them to rock faces, often in communal nests in batches of 30 – 40”. This is unknown in other *Pachydactylus* species. The photograph (Plate X, Fig.6) in the same publication of one such batch was taken on Barby Farm (2516DC), Bethany district, Namibia. As this is within the accepted range of this species (Branch et al., 1996), it can now be accepted that these were eggs of *P. haackei*, a taxon not yet recognized in 1943. Although Branch (1999) repeats for the senior author has information, which will be published later, that the statement previously made for *P. namaquensis* (Branch, 1988) n.l. “Two large, round, hard-shelled eggs (16 mm diameter [similar to FitzSimons 1949 and the current new measurements]) are laid in a rock crack. Communal egg sites may contain many eggs”. If this statement is based on observations, it may apply to *P. namaquensis* specifically, as the senior author has information, which will be published later, that the laying process in *P. kianderoderma* differs significantly from that of *P. haackei* and he expects that it may differ from *P. namaquensis* as well.

The present observations and indications of differences in the reproductive strategies in the *P. namaquensis* complex should be verified in the field.

References

Submitted by

Mirko Barts (Waldsasseser Str. 24,12279 BERLIN, Germany. E-mail: pachydactylus@aol.com) and Wulf Haacke (Herpetology, Transvaal Museum, P.O.Box 413, Pretoria, South Africa. E-mail: haacke@nfi.co.za)

GEKKONIDAE

Pachydactylus punctatus

Speckled Thick-toed Gecko

REPRODUCTION

Two pairs of this gecko were collected in April 1996 near Chapman’s Tree (20° E 29.40’S, 25° E 14.93’S) in the central area of the Makgadikgadi Pan system, Central District, Botswana. They were found as pairs under the loose bark of logs in association with termites. They were taken to Germany and placed into two separate terraria (25x25x25 cm) in the combination as found in nature. A 40W neon tube provides illumination, the substrate is fine sand, a piece of bark provides shelter on the ground, while a stone mosaic against the back wall provides climbing facilities. Small crickets, waxmoths and their larvae, fruitflies and meadow sweepings are provided as food.

The first eggs were laid during the following northern spring, when each pair produced one batch of 2 hard shelled eggs with mean dimensions of 8.00 x 5.80 mm. They hatched after 55 (± 5) days in an incubator at temperatures varying between 28° and 30° C. Additional observations were made on these geckos while keeping them in captivity for the next four years. As previously mentioned, each pair was kept in a separate terrarium where the above mentioned eggs were produced. After the first season one of the males died and the single female was transferred into the terrarium of the remaining pair. After a short while the ‘widowed’ female became dominant. This also became evident in her physical condition as she managed to capture more of the prey items than the other two individuals. During this season no eggs were laid. During the following season the former ‘pairs’ female, which was now dominated by the ‘widowed’ female, was removed from the terrarium. Again no eggs were produced during the entire season. Only once the original pair was reunited and the ‘widow’ removed during the following, i.e. the fourth season, were further eggs produced (one pair and then a single egg). The fact that reproduction only occurred once again when the original combination of partners was re-established, could be an indication that this species might be monogamous, possibly mating for life.

Of the seven hatchlings (mean size SVL = 14.0 mm., TL = 15.0 mm) two surviving females attained adulthood and therefore possible sexual maturity after two years. However, in the absence of available males this could not be determined. The senior author is under the impression that in nature adults tend to occur in pairs, while sub-adults and juveniles are found singly.

Submitted by

Mirko Barts (Skandinavische Str.22, 101317, Berlin, Germany) and Wulf D. Haacke (Transvaal Museum, P.O. Box 413, Pretoria, South Africa).
TESTUDINES
Homopus signatus signatus
Speckled Padloper

OBSERVATIONS ON NATURAL DIET

Published data about the natural diet of Homopus s. signatus is scant. Currently, a research project focusing on this aspect (among others) is in preparation through the Studbook Breeding Programme Homopus. During a preceding stay in Springbok, Namaqualand on September 16-19, 1999 I was able to make observations on feeding by this species on three separate occasions.

On 17 September, 1999 a large female specimen (straight carapace length (SCL) = 103 mm, plastron length (PL) = 93 mm, shell width (SW) = 70.5 mm, mass = 199 g) was observed feeding on the lower branches of a bush later identified as Hermannia trifurca L. She was found in the shade at 14:00 hours where the temperature measured 62° Fahrenheit (16.7° C). It was a clear day, temperature in full sun was 71.7° Fahrenheit (22.1° C). The relative humidity was 53% due to rain which had fallen the night before.

A second observation was made on 18 September, 1999 of an adult male H.s.signatus (SCL = 80 mm, PL = 65 mm, SW = 55.3 mm, mass = 107 g) found feeding on low browse later identified as Grielum humifusum Thunberg. He was discovered at 12:45 hrs in full sun where the temperature was recorded at 95° Fahrenheit (35° C). The relative humidity was 21%.

This would later seem to be an important food source for tortoises in the area as a second feeding observation was recorded on 19 September, 1999 on the same plant by an adult female H.s.signatus (SCL = 90.2 mm, PL = 84.5 mm, SW = 67.3 mm, mass = 156 g). She was found at 11:37 hrs in full sun where the temperature read 98° Fahrenheit (36.7° C). The humidity was 15%. A third observation was made earlier that morning at 11:05 a.m. of an adult female Cherstina angulata feeding on the same plant as well (see following note).

On 19 September, 1999 an adult female (SCL = 94.6 mm, PL = 84.7 mm, SW = 69 mm, mass = 118 g) was found feeding on a clover species (Oxalis). The species could not be identified as the plant was not in bloom at the time. This was found growing underneath and in the shade of larger bushes where this specimen was observed feeding. The temperature in the shade was 76° Fahrenheit (24.4° C), 96° Fahrenheit (35.6° C) in the sun. The relative humidity was 14%. Night time temperatures during this period ranged from 36° - 48° Fahrenheit (2.2° - 8.9° C).

Acknowledgements
I wish to thank Victor Loehr (Coordinator of the Studbook Breeding Programme Homopus) for inviting me to participate in the Studbook and for his continuing support. Thanks also to Victor Loehr and Dr. Ernst Baard (Cape Nature Conservation) for reviewing this article. Special thanks to Garth de Jong for his assistance throughout the trip and to Dr. John Manning, Dr. Peter Goldblatt and Mr. Christopher Cupido of the Compton Herbarium for identifying the plants mentioned herein.

Submitted by
J. Thomas Licitra (Studbook Breeding Programme Homopus, 801 Somerdale Drive, Webster, NY 14580, USA. E-mail: tortoise@rochester.rr.com).
Programme’s web site: http://www.homopus.org
Chersina angulata
Angulate Tortoise

OBSERVATIONS ON NATURAL DIET
During a recent stay in Springbok, Namaqualand on September 16 - 19, I was able to observe this species feeding on one occasion.

On 19 September, 1999 an adult female specimen (straight carapace length = 157 mm, plastron length = 153 mm, shell width = 111 mm, mass = 597 g) was observed feeding on Grielum humidum Thunberg (see above). She was found at 11:05 hours in full sun where the temperature measured 95 ° Fahrenheit (35 °C). It was a clear day. The relative humidity was 15%.

This may be an important food source for tortoises in the area as Homopus s. signatus was observed during this study period feeding on this plant as well (see above).

Acknowledgements
I wish to thank Victor Loehr (Coordinator of the Studbook Breeding Programme Homopus) for reviewing this article. Special thanks to Garth de Jong for his assistance throughout the trip and to Dr. John Manning, Dr. Peter Goldblatt and Mr. Christopher Cupido of the Compton Herbarium for identifying the plant mentioned herein.

Submitted by
J. Thomas Licitra (Studbook Breeding Programme Homopus, 801 Somerdale Drive, Webster, NY 14580, USA) E-mail: tortoise@rochester.rr.com.
Programmes web site: Http://www.homopus.org

Homopus signatus signatus
Speckled Padloper

MAXIMUM SIZE
Currently, a research project on the population dynamics and behavior of H.s.signatus is in preparation through the Studbook Breeding Programme Homopus.

During a preceding stay in Springbok, Namaqualand (2917DB) September 16 -19, 1999, I was able to capture and record statistics on a specimen that sets a new size parameter for Homopus s. signatus. A large female specimen (straight carapace length = 103 mm, plastron length = 93 mm, shell width = 70.5 mm, mass = 199 g) was captured a few hundred meters south-east of Springbok on 17 September, 1999. Previous maximum straight carapace length (SCL) recorded for this species is 96 mm (Branch 1998). Only Patterson (1991) mentions a maximum SCL of "slightly more than 100 mm", but without referring to published details of this finding. The specimen concerned is currently alive, kept in captivity, and registered in the Studbook Breeding Programme Homopus, as studbook number 0021.

References

Acknowledgements
I wish to thank Victor Loehr (Coordinator of the Studbook Breeding Programme Homopus) for inviting me to participate in the Studbook and Dr. Ernst Baard (Cape Nature Conservation) for his continuing support. Additional thanks to Victor Loehr for reviewing this article. Special thanks to Garth de Jong for his assistance throughout the trip. The specimen described here was collected with permit number 050/99 and exported under CITES export permit number ZA9156615.

Submitted by
J. Thomas Licitra (Studbook Breeding Programme Homopus, 801 Somerdale Drive, Webster, NY 14580, USA) E-mail: tortoise@rochester.rr.com.
Programmes web site: Http://www.homopus.org
HOMOPUS SIGNATUS CAFER
Southern speckled padloper

AUTUMN ACTIVITY
Confusion exists about many aspects of the biology of Homopus signatus. One of these aspects is the annual activity cycle of the species. Activity during spring, when the area of distribution is flowering and food will be abundant, has commonly been described in literature. As for summer, a study carried out by Bayoff (1995) revealed that H. s. signatus was aestivating in rock crevices. Winter and autumn activity in H. signatus, however, has by various authors been suggested to exist, although H. s. signatus is not usually encountered during autumn and winter in the natural habitat in the vicinity of Springbok (Klaas van Zijl, Goegap Nature Reserve, Springbok. pers. comm.). Published recordings are lacking.

On 15 April, 1999 (16.00 hrs) an adult male H. s. signatus cafer was located on the road between Clanwilliam and Lamberts Bay, Northern Cape, South Africa. It was spotted approximately 5 km from Clanwilliam, crossing the road from left to right, after a sunny and warm day. Although the mass was not recorded, the specimen appeared to have a low weight. Carapace abnormalities were present (see photograph).

Scattered sightings of H. signatus could reveal more details about the annual activity cycle of this species.

References

Submitted by
V.J.T. Loehr and M. Schmalz (c/o Homopus Research Foundation, Nipkowplein 24, 3402 EC IJsselstein, The Netherlands, E-mail loehr@homopus.org, http://www.homopus.org)

HOMOPUS SIGNATUS SIGNATUS
Namaqualand speckled padloper

FEMALE MATING ACTIVITY
H. s. signatus has been bred in captivity within the Studbook Breeding Programme Homopus since 1995. Mating activity (as described in Loehr (1999)) consists of introductionary head bobbing by both sexes, mounting of the female by the male, and sometimes copulation. Mounting usually is coincided with the male opening his mouth, sometimes producing a high squeaking vocalisation. Females consequently try to avoid mating activity by the male by walking away and hiding in rock crevices.

When early spring climatic conditions (photoperiod 10.25 hrs, maximum temperature in inhabited rock crevice 22° C, 2 sprayings of the tortoise enclosure per week) prevailed in the terrarium in 2000, one female in the 1.2 breeding group started digging test nest holes for oviposition on 28 February, 2000. On 1 March, the maximum day temperature was temporarily adjusted to 25°C, and a suitable nesting site was moistened with hot water. At 20.30 hrs the gravid female tried to mount the other female, showing typical male mating behaviour, as described above. This continued for approximately 5 minutes. Immediately afterwards, the gravid female started digging a nest hole at the humid site, and produced a clutch of one egg (16 g) at 21.30 hrs.

Male mating behaviour showed by gravid captive female tortoises of different species seems to occur more often (oral reports by several tortoise breeders), but published reports are scarce. It has been explained in terms of securing a nesting site by expressing dominant behaviour, or as a displacement activity. In the case described here, the sudden and single occurrence suggests the latter explanation to be more likely than the former.
SERPENTES
COLUMBRIDAE

AFRONATRIX ANOSCOPUS
BROWN WATER SNAKE

DEFENSIVE BEHAVIOUR

Precious little has been reported on the natural history of *Afronatrix anoscopus*, western Africa's Brown Water Snake (Cansdale, 1961; Dunger, 1971). Its defensive behaviour, for example, has heretofore not been published. From June 1986 to July 1987, I collected seven *A. anoscopus* from a swamp behind the back yard of House 4 of Area J, Yekepa, Liberia. I recorded the defensive behaviour of 7 of these specimens. Afterwards, 5 of the specimens were returned to the wild, one died in captivity, and one was given to Stein Zoo in Monrovia, Liberia. Each specimen was assigned a code number, which is solely my invention and has no connection to any institution's collection. The lengths of and defensive behaviours observed in each specimen are as follows.

- Specimen A16C (23 cm) would draw its head and neck toward its body and then cease motion.
- Specimen A19C (25 cm) would flatten its body, inhale, and strike.
- Specimen B25C (51 cm) would cease motion when first approached, submerge itself if not left alone, and bite if handled.
- Specimen C8C (28 cm) would cease motion when first approached, strike if not left alone, and if handled would bite or roll about its body's longitudinal axis.
- Specimen C19C (53 cm) would flatten its body, draw its head toward its body. Specimen C18C (54 cm) would flatten its body and draw its head toward its body. Specimen C19C (53 cm) was docile, and never exhibited any recognizable defensive behaviour.
- Specimen C21C (41 cm) would flatten the body, draw its head toward its body, and strike. In this sample, there was little consistency in defensive behaviour, and no ontogenetic trends (deduced from specimen sizes) were apparent. Of the 7 specimens, 43 % (n = 3) exhibited motion cessation; 43 % (n = 3) exhibited body-flattening; 43 % (n = 3) drew the head toward the body; 58 % (n = 4) struck or bit when handled (all were handled); 29 % (n = 2) struck even when not handled; 14 % (n = 1) exhibited longitudinal rolling when handled; 14 % (n = 1) exhibited no recognizable defensive behaviour.

Acknowledgments

I thank Mr. Alfred Yeanay and Mr. Torseh Yeanay for finding 6 of the *A. anoscopus* used in this study.

References

Submitted by

Phil Senter (Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA).

LAMPROPHIS SWAZICUS
Swazi Rock Snake

SIZE, LEPIDOSIS AND HABITAT

On 9th July, 2000 a *Lamprophis swazicus* was collected in the Huvane area (2631AA MOTJANE), in western Swaziland by Morné Arnold and was brought to Malolotja Nature Reserve. The locality is approximately 6.5 km south of Forbes Reef, the type locality of the species (Schaefer, 1970). The snake was found under a slab of rock lying on bedrock, in undulating, rocky, montane grassland at an altitude of 1380 m.

The snake is an adult female of exceptional size with a snout-vent length of 645 mm and with a tail length of 166 mm (total length: 645+166 = 811 mm). This exceeds the snout-vent length of the largest specimen, 545+185 = 730 mm, the Transvaal Museum paratype (TM34836) from Havelock, Swaziland, recorded by Broadley (1983), by 100 mm and represents the largest specimen yet recorded. Another specimen, an adult male, collected at Malolotja Nature Reserve in December 1997 had a total length of 555+175 = 730 mm which equalled the size of the Havelock specimen, but had a greater snout-vent length. The largest of four Transvaal specimens examined by Jacobsen (1989), had a snout-vent length of 465 mm. Two other specimens from Swaziland, one from Malolotja Nature Reserve (TM71000) and one from
Usutu Forest Plantation (TM71001) are relatively small with total lengths of 347+149 = 496 mm and 339+95 = 434 mm respectively.

The Hawane snake, except for some of the head shields that differ in size, number and proportion, agrees with the description provided by Broadley (op. cit.). The main digression is that the snake has a well-developed pair of anterior chin shields but lacks a posterior pair. Instead of a pair of posterior chin shields there are numerous smaller shields in its place, none of which could be described as paired. There are nine lower labials of which the first five are in contact with the anterior pair of chin shields. Upper head shields include a single preocular, two postoculars, eight upper labials, the first in contact with the two nasals but not in contact with the loreal. The third, fourth and fifth upper labials are in contact with the eye. The frontal is as long as its distance from the snout and the frontal is longer than the suture between the parietals. This differs from the description provided by Broadley (op. cit.). Finally, the snake has 17 rows of midbody scales, 207 ventrals and 78 subcaudals.

The habitat of the species is described as “Rock outcrops to savannah” by Branch (1998). Jacobsen (op. cit.) describes the habitat as “Rocky hillsides and rock outcrops usually in montane grassland.” In Swaziland all specimens have been found in rocky, montane grassland. In the Malolotja and Hawane areas where Lamprophis swazianus has been found the habitat is composed of undulating grassland, with occasional, low granitic outcrops, whereas the Havelock, Mbabane and Usuthu Forest Plantation localities are steeper, more domed granitic hills. In Swaziland the species is restricted to montane grassland and has not been found in savannah habitat.

On account of the rarity of Lamprophis swazianus, the Hawane snake was released. However, during the period it was in captivity it shed its skin and this has been retained as a voucher specimen (RCBS1946) and will be deposited in the Transvaal Museum in due course.

Acknowledgments
I would like to thank Morné Arnold for bringing the specimen to Malolotja Nature Reserve. Thanks also to Jason Stewart of the Crocodile River Reptile Park, Nelspruit for sexing the snake.

References

Submitted by
R.C. Boycott (Malolotja Nature Reserve, P.O. Box 1797, Mbabane, Swaziland).

AMPHIBIA

KASSINA SENEGALENSIS (Duméril and Bibron, 1841)

Bubbling Kassina

DORMANCY

A Kassina senegalensis individual was caught on the farm Donegal (22° 50' S; 29° 12' E; 2229CC) +/- 20 km north of the small town, Vivo, and just south of the Langjan Nature Reserve in the Northern province. The female of 28 mm was caught on the 7th July, 2000. She had emerged from beneath loose bricks, which are used as a standing place for a primitive shower. The shower was used daily from only the 4th July by nine human beings. The female was stiff and was shedding layers of skin. The female was probably in a dormant state during the winter months under the bricks and was waiting for the onset of the next rainy season. The excessive water from the shower probably caused her emergence from the hiding place. The nearest temporary pool was just more than 100 m from the shower.

Submitted by
J. C. P. van Wyk (Hoerskool Waterkloof, P. O. Box 25085, Monument Park, Pretoria 0105, South Africa. E-mail: klofies@global.co.za).
GEOGRAPHICAL DISTRIBUTION

African Herp News publishes brief notes of new geographical distributions (preferably at least 100 km from the nearest published record) of amphibians and reptiles on the African continent and adjacent regions, including the Arabian peninsula, Madagascar, and other islands in the Indian Ocean.

A standard format is to be used, as follows: SCIENTIFIC NAME; Common name (for sources, see Natural History Notes); Locality (country, province or state, location, quarter-degree unit, and latitude and longitude if available; elevation above sea level; use metric units); Date (day, month, year); Collector(s); Place of deposition and museum accession number (required if specimens are preserved); Comments (including data on the size, colour and taxonomic characters, eg. Scalation, webbing, especially for taxonomically problematic taxa; and nearest published locality record(s) in km; references to be quoted in the text). Submitted by: NAME, Address (in parentheses).

Records submitted should be based on specimens deposited in a recognised collection. New South African province names must be used.

Notes submitted in an incorrect format or style will be returned to the authors.

REPTILIA
SAURIA

AMPHIBIA

MONOPELTIS SPHENORHYNCHUS

Eastern Wedge-snouted Worm Lizard
Botswana, Maunatlala, eastern Tswapong Hills (22°27'Da); 22° 37' S and 27° 40' E. Alt. Ca 950 m; 8 December 2000; A.J. Gardiner; Natural History Museum of Zimbabwe, NMZB 16738, dug up in mopane sandveld.

The specimen was cut in two, but measures approx. 225 + 12 mm, diameter = 6 mm. Annuli 247 on body, 10 on tail, 30 + 18 segments in a midbody annulus. Supralabials 3, infralabials 3; postgenials 2 + 3; parietals 6; pectorals 6. This has been considered a polytypic species (Broadley, Gans & Visser, 1976, Bull. Amer. Mus. Nat. Hist. 157 (5): 311-486). This is the first record of the taxon from Botswana, representing an eastern range extension of 150 km from the Magalakwin-Limpopo confluence (Broadley et. al., loc. cit.) and it is separated by less than 100 km from the nearest Botswana record of the Kalahari form M. mauricii Parker 1933 at Serowe (Broadley, 1992, J. Herpetol. Assoc. Afr. 41: 39). As there is no sign of intergradation between these two taxa, they are considered good evolutionary species.
PELOMEDUSIDAE

PELUSIOS SUBNIGER (Lacépède, 1788)

Pan hinged terrapin
South Africa, Northern Province - Mpumalanga, Kruger National Park.

A new geographical distribution for *Pelusios subniger* was found during sampling for a population genetic research project on terrapins in the south of the Kruger National Park, during January 2000. The occurrence of pan hinged terrapins in South Africa was previously limited to a number of temporary pans in the Nyandu sandveld area (22° 30' S, 31° 22' E) in the northern parts of the Kruger National Park. Three species (*Pelomedusa subrufa*, Lacépède, 1788; *Pelusios sinuatus*, Smith, 1838 and *Pelusios subniger*) were collected while netting a pan (25° 11' 51"S, 31° 46' 21"E, 2531BB) on the Randspuit Road, south-west of Lower Sabie. The pan is close to the Vurhami River that joins the Crocodile River to the south. We collected 21 freshwater terrapins: four *P. sinuatus*, 10 *P. subrufa* and seven *P. subniger* individuals of which two were females and five males. This new geographical distribution is approximately 300 km south from the Nyandu sandveld area where it was the only previous record within the borders of South Africa. A voucher specimen of each species was lodged at the Skukuza Museum. Detailed information regarding sizes and weight are available from Dieter Hofmann (dh@na.rau.ac.za). The possibility exists that the pan-hinged terrapins might have migrated even further south due to the subsequent heavy floods during March-April 2000.

Acknowledgements

We thank the Sasol fund for financial assistance, Dr. Andrew Descon (Senior Scientist: Small Vertebrates, Scientific Services, Kruger National Park), Mr. Pieter Kotze and Me. Guin Zambatis (Curator of the Skukuza Museum) for their assistance.

Submitted by

Dieter Hoffman and Herman van der Bank (Department of Zoology, Rand Afrikaans University, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa).

COLUBRIDAE

DASYPELTIS MEDICI

East African Egg Eater
South Africa, Kwazulu/Natal Province, St. Lucia. Sea level, 21 December 1996.

The specimen was caught at Iphiva camping grounds on the outskirts of the town of St. Lucia at approximately 19h00 on 21 December 1996. The specimen was nearly stepped on while crossing a dirt road, and was caught just after it had entered undergrowth next to the road. It was treated as poisonous and was placed in a material bag for the night until it could be correctly identified the next morning. The relatively slender build with a longish tail, typically rounded head and dark band along the spine suggested an East African Egg Eater (*Dasyptes medici medici*). On closer examination the overall colour was a grey-brown with a dark band along the spine from approximately 50 mm from the neck to the tip of the tail. There were darker vertical marks along the flanks, just above the ventral scales and were irregularly spaced along the whole length of the body. The dark colouring was occasionally interrupted by a white mark. The tongue had a black anterior and a blue posterior. The eye was a light yellow in colour with a black vertical “cat-eye” pupil. The inside of the mouth was pink as opposed to black in the African Egg Eater (*Dasyptes sabrina*). The scales were rough and heavily keeled. No measurements were taken. Photographs were taken and the snake was released at the site of capture. The nearest recorded locality according to Bill Branch’s *Field Guide to Snakes and other reptiles of Southern Africa* (1998 edition) is Sodwana (Northern Kwazulu/Natal Province). This new locality expands the current distribution approximately 100 km further south. A possibility therefore exists that this species occurs in dune forests between Sodwana and St. Lucia, and may even occur further south in other suitable habitat.

Submitted by

Darren and Errol Pietersen (Kingfisherspruit, Private Bag X402, Skukuza, 1350, South Africa)
RECENT AFRICAN HERPETOLOGICAL LITERATURE: 21

W.R. Branch
Port Elizabeth Museum, P.O. Box 13147, Humewood 6013, South Africa

This survey covers the period 1999 to present, with a few earlier, overlooked papers. For brevity no articles in any HAA publication are included, neither are peripheral publications using *Xenopus laevis* (or any other African species) as a model in biochemical or developmental studies, etc. To assist members, and where known, the following annotations are given: the date of publication (in brackets) if known to differ from the volume year; an English title for papers published in a foreign language; relevant African details from general articles; (description of *Arthrodipsa landriana*).

Cooper, W.E, Jr. & Habegeher, J.J. 2000. Lingual and biting responses to food chemicals by some *Furcifer pardalis* and *Geckoidea* species. *J. Herpetol.* 34(3): 360-368. (includes *Phrynocephalus tessulanus*).

Honda, M., Ota, H., Kobayashi, M., Nabhitabhata, J., Yong, H-S. & Hikada, T. 2000. Phylogenetic relationships, character evolution, and biogeography of the subfamily Tylotoglossidae (Reptilia: Scincidae) inferred from mitochondrial DNA sequences. Mol. Phylog. Evol. 15(3): 452-461. (includes Mabuya affinis, M. striata and M. quinquenotata; unfortunately the tissue samples were obtained from pet dealers and lack locality data; it is not certain that the sequences derive from these two species)

Jardine, A. 2000. African Regional Studybook for the Southern African Rock Python Python sebae natalensis. PAAZAM African Preservation Programmes, irreg. pag. (comments that A'This is the second and final edition of the studybook; continued...as almost none of the holders of the species are breeding them on a regular basis, and many are seeing a fairly high turnover of animals and replacing them with wild caught stock #!)

HERPETOLOGICAL BOOK UPDATE FOR THE MILLENIUM

1. Amphibians and Reptiles of Morocco.
 By J. Bons and P. Geniez. Barcelona, 1996. Includes Western Sahara Biogeographical Atlas. Pp. 319 = colour photos and colour folding map. Though the title is in English, the text is in French and Spanish simultaneously. It is however the only comprehensive review of the herpetofauna of Morocco. Available from Natural History Books, USA. Fax #: +(319)-354-0844.

2. NATURAL HISTORY OF MONITOR LIZARDS
 by Harold F De Lisle
 Orig. Ed. 1996
 Unique among lizards, the monitors are in some ways more like birds and mammals than like their smaller and less-active relatives. Their size and behavior have long made them objects of fascination and myth wherever they are found. The author provides extensive information on the anatomical and physiological traits that have made the varanids such successful and spectacular animals. He deals with their ecology and behavior in detail and includes a description, range map, diet, conservation status, and life history notes for each species along with almost 200 references on varanid lizards.

3. PRACTICAL ENCYCLOPEDIA OF KEEPING & BREEDING TORTOISES & FRESHWATER TURTLES*
 by A. C. Highfield
 Orig. Ed. 1996
 ISBN 1-873943-11-3 308 pp. Cloth
 ISBN 1-873943-06-7 Paper
 This work presents the most detailed, practical information available on the management of captive collections. All aspects of managing breeding groups are discussed, including selection of breeding stock; behavioral problems; genetic aspects; eggs and incubation techniques; rearing hatchlings; dietary management; and veterinary problems.
OTHER NEWS

PRESS RELEASES

The Chicks which became snakes’ dinner
(The Mercury, Hobart, Tasmania, Australia, April 2000).

A Taranna snake farm operator was yesterday fined $1000 for feeding live chicks to his tiger snakes. Anthony Baden Brain, 37, of Bayfield Road, Taranna, was found guilty of one account of assisting in the management of premises where animals kill other animals. He was found guilty of one count of an act which resulted in the death of an animal at Taranna’s Tiger Snake Farm on January 31st. About 200 day-old chicks were put in the snake enclosure and were bitten and eaten by the snakes in front of tourists. One of the tourists took photographs of the incident and these were tendered in evidence to the Hobart Magistrates court. Council for Brain, Peter Warmbrunn said the circumstances for the case were unique. Mr Warmbrunn said the only reason live chicks were fed to the snakes was to keep the snakes healthy for venom production and research. He said there was no sinister motive behind Brain’s actions. Magistrate Michael Hill said he did not dispute that Brain believed his actions were in the best interests of the snakes. However, Mr Hill said, this did not outweigh the suffering of the chicks. He said this was not a case that needed a strong deterrent penalty and fined Brain $1000, with 6 months to pay.

Animal collector wants cops to return his spiders
(Sunday Times, South Africa, 2000)

A distraught animal collector is involved in a bizarre legal tussle over four spiders that he claims were unlawfully confiscated from his house during a police raid, writes BOBBY JORDAN.

Fazel Bhyat, 35, who collects insects and reptiles at his home in Roshnee, south of Johannesburg, has obtained a court order demanding the return of his pets. He believes police may have killed them, along with two snakes and an iguana also confiscated during the raid. “All I ever did was look after a few animals, and now I am being treated like a major criminal”, said Bhyat, an avid snake collector for more than 15 years. The house is decorated with snake skins and plaster of paris snake moulds. His car bears a sticker saying “Danger – this car is protected by snakes” and many people in the neighbourhood know him as the “Snake man”. Now he wants police to return his spiders, as
well as an iguana named Iggy and two West African gaboon adders that he says had nothing to do with his court case.

Snakes interfere with broadcast
(Sunday Tribune, 22nd October 2000, South Africa)

Snakes interrupted broadcasts at the San Radio station at Schmidsdrift in the Northern Cape. The snakes entered the premises of the mobile unit used by the SABC as a studio. Producer Joylene van Wyk said community members had killed a cobra which entered the premises on Friday. It was not yet clear how many snakes were still inside the unit. – Sapa.

Undercover lizards smuggler caught
(Natal Mercury, 11 September 2000, South Africa.)

LAS VEGAS – A Las Vegas man has been convicted of smuggling 12 lizards into the United States in his underwear. Don Astorga, 31, was arrested at Las Vegas airport in June after police looking for drugs noticed unusual bulges around his groin. In his underwear were several socks stuffed with nine dead lizards and three live ones, including a monitor lizard. – Sapa - AP.

Snakes put an end to power to the people
(Sunday Times, 2000, South Africa)

Traditional healers have been called in to deal with snakes which are blacking out towns in Zimbabwe by coiling themselves around power transmitters. Pythons have plunged the town of Beitbridge into darkness five times in the past year. On each occasion they were found hanging – blackened and electrocuted – from blown power terminals. In a classic African blend of modernity and tradition, the state electricity company has asked Nyangas (traditional healers) to tackle the problem. Nyangas cleanse an area of snakes by burning traditional medicines made for herbs – the smoke sends the reptiles scurrying away. Strategically placed fires are thought to be able to protect an electricity network. This method is also used against baboons. The Telegraph, London.
HAA Publications Available:

At present the following numbers are still available as back issues. Prices include packaging and postage (surface mail only). They may be ordered from the H.A.A. Secretary, P.O. Box 20142, Durban North, 4016, SOUTH AFRICA.

ISSUE

26 December 1981
27 June 1982
28 December 1982
29 October 1983
31 January 1985
32 January 1986
33 November 1987
34 November 1988
35 March 1989
36 August 1989 (Proceedings 1st Symposium Stellenbosch)
37 May 1990
38 November 1990 (Proc. Husbandry Symposium Delta Park)
41 December 1992
42 September 1993
43 June 1994

44(i) April 1995
44(ii) October 1995
45(i) August 1996
45(ii) December 1996
46(i) September 1977
46(ii) December 1997
47(i) September 1998
47(ii) March 1999
48(i&ii) March 2000
49(i) September 2000

We also have back issues of some Newsletters:
#2, #3, #7, #8, #10, #14 #15 onwards
#17 Special Issue (Bibliographic Index to the Journal from 1965 to 1991 (#1 to #39)

RESEARCH NEWS

(anybody wishing to contribute to this section please contact the Editor)

Homopus Research Foundation

Since 1995, a number of activities related to tortoises of the genus *Homopus* have been carried out, within the Studbook Breeding Programme *Homopus*. Initially the programme was started for the co-ordination of studbooks (captive breeding projects) on *Homopus*, under auspices of the European overall studbook foundation known as 'Stichting Overkoepelend Organon Stamboeken' (SOOS). However, in the course of time the number of activities not directly related to studbook keeping, such as conducting scientific work within the captive populations, and even fieldwork, increased, and therefore it was decided to condense all activities in a new, broader organisation, named the Homopus Research Foundation. Another reason for the new foundation is that its non-profit tax-exempt status facilitates receipt of donations from third parties, for funding the research.

The current studbooks on *Homopus australis* and *H. s. signatus* are among the activities carried out within the new foundation. These studbooks will also remain under auspices of the overall foundation SOOS.

Additional information about the *Homopus Research Foundation* can be found on the internet site of the foundation, http://www.homopus.org.
Interesting web addresses:

- Coming soon - the new HAA Website
 http://www.wits.ac.za/haa

- Join the International Herpetological Network.
 To subscribe send a blank message to:
 HerpNet-subscribe@egroups.com

- An on-line guide to the Snakes of Florida
 http://www.flnh.ufl.edu/natsci/herpetology/herpetology.htm

- Studbook Breeding Programme for Homopus,
 Programme's web site: http://www.homopus.org

- African Elapids - Mamba Information Site
 http://www.geocities.com/rainforest/6560

- Crocodilians, Tuatara and Turtle species of the world.
 An online taxonomic and geographic reference
 http://www.flnh.ufl.edu/natsci/herpetology/turtcroclist
Income Statement

<table>
<thead>
<tr>
<th>Source</th>
<th>2000</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest</td>
<td>8,162</td>
<td>6,502</td>
</tr>
<tr>
<td>Donations</td>
<td>7,030</td>
<td>2,111</td>
</tr>
<tr>
<td>Sale of journals</td>
<td>2,927</td>
<td>1,506</td>
</tr>
<tr>
<td>Subscriptions</td>
<td>27,112</td>
<td>19,018</td>
</tr>
<tr>
<td>Symposium</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>44,260</td>
<td>25,163</td>
</tr>
<tr>
<td>Expenses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audit fees</td>
<td>900</td>
<td>0</td>
</tr>
<tr>
<td>Proceedings</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Congo Book</td>
<td>6,768</td>
<td>0</td>
</tr>
<tr>
<td>Journals</td>
<td>13,550</td>
<td>8,033</td>
</tr>
<tr>
<td>Newsletters</td>
<td>5,878</td>
<td>5,160</td>
</tr>
<tr>
<td>Bank charges</td>
<td>904</td>
<td>113</td>
</tr>
<tr>
<td>Office expenses</td>
<td>1,081</td>
<td>1,023</td>
</tr>
<tr>
<td></td>
<td>33,000</td>
<td>15,127</td>
</tr>
<tr>
<td>Net surplus for the year</td>
<td>-13,794</td>
<td>10,060</td>
</tr>
</tbody>
</table>

Balance Sheet - 29 February 2000

<table>
<thead>
<tr>
<th>Note</th>
<th>2000</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funds Employed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accumulated funds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balance at beginning of year</td>
<td>58,840</td>
<td>49,680</td>
</tr>
<tr>
<td>Net surplus for the year</td>
<td>13,794</td>
<td>10,060</td>
</tr>
<tr>
<td></td>
<td>73,400</td>
<td>60,000</td>
</tr>
</tbody>
</table>

Employment of funds

<table>
<thead>
<tr>
<th>Current assets</th>
<th>2000</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBS - Durban</td>
<td>53,037</td>
<td>11,900</td>
</tr>
<tr>
<td>Standard Bank - Bloemfontein</td>
<td>16,607</td>
<td>24,947</td>
</tr>
<tr>
<td>Volkskas - Durban</td>
<td>5,403</td>
<td>25,253</td>
</tr>
<tr>
<td>Total</td>
<td>75,047</td>
<td>62,111</td>
</tr>
</tbody>
</table>

Current liabilities

<table>
<thead>
<tr>
<th>Accounts payable</th>
<th>2000</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,611</td>
<td>2,521</td>
</tr>
</tbody>
</table>

Net current assets

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>73,436</td>
<td>59,640</td>
</tr>
</tbody>
</table>

Membership Fees As of 1 April 2001

African Membership

- **Ordinary Membership**
 - 1 year membership R100.00. Submit in Rand.
 - 3 year membership R270.00. Submit in Rand.

- **Scholar**
 - 1 year membership R70.00. Submit in Rand.

Overseas Membership

- **Dollar Payments**
 - 1 year membership $30.00. Submit in US Dollars by personal cheque or money order.
 - 3 year membership $80.00. Submit in US Dollars by personal cheque or money order.
 - Note: Please, no U.S. "postal" money orders.

- **Rand Payments From Overseas**
 - 1 and 3 year memberships - Rand equivalent of US$ rate payable by bankers draft or money order (NOT postal order).
 - Owing to numerous banking problems, members are kindly requested not to submit payments directly to any Building Society or Bank Account. All payments should be made out to the Herpetological Association of Africa and be submitted directly to:

The Secretary

\[
\text{HERPETOLOGICAL ASSOCIATION OF AFRICA} \\
P. O. BOX 20142 \\
DURBAN NORTH 4016 \\
SOUTH AFRICA
\]