EDITORIAL

SHORT COMMUNICATIONS
MENEGON M et al. Nguu North forest reserve, Tanzania

NATURAL HISTORY NOTES
CUNNINGHAM PL & W ADANK. Geochelone pardalis
CUNNINGHAM PL & W ADANK. Pachydactylus turneri

GEOGRAPHICAL DISTRIBUTION
RASMUSSEN JB. Micrelaps vaillanti
SCHMIDT WR & SCOTT E. Lamprophis swazicus
DU TOIT DA & ALBLAS A. Nucras livida
ESTERHUIZEN A et al. Varanus albigularis
BROADLEY DG & VAN DAELE P. Colopus wahlbergi
BAUER AM & LAMB T. Pachydactylus fasciatus

HERPETOLOGICAL SURVEYS
CUNNINGHAM M et al. Cockscomb Mt, South Africa

RECENT AFRICAN HERPETOLOGICAL LITERATURE

NEWS & ANNOUNCEMENTS

HAA FINANCIAL STATEMENTS
EDITORIAL

It is now over a year since issue 35 of African Herp News and this long overdue issue is replete with natural history and distribution notes, along with the latest update on African Herp literature from Bill Branch (apologies from the editor for the delay). Also in this issue we introduce a new form of note, Herpetological Surveys, for brief, annotated lists of significant survey results. It is nothing new for African Herp News to publish species lists for important areas but we hope that this section will encourage further submissions in a standard format.

The greatest news of the year is that Africa will host the 5th World Congress of Herpetology (WCH5). This event will take place in Cape Town during November 2005 and is being organised by a committee comprising herpetologists from Africa and elsewhere around the world (see news item, p.38). The smooth running of the congress will require support from the HAA and active involvement of many members in organising scientific symposia, workshops, exhibitions and tours. To this end African Herp News and the society WWW site will follow developments closely in the lead up to the congress and act as a conduit between the organising committee and African herpetologists. The most important stepping stone along this path is the next HAA symposium, which will be held near Port Elizabeth in October 2004 (announcement p.38).

The past year has seen several changes to the society. Particular thanks are due to both Liz Scott and Louis Du Preez who have served ably in their respective roles as secretary and treasurer. Among several innovations instigated or encouraged by Liz and Louis are a streamlining of the membership database (fear to be in arrears!), changes to the membership fee structure, a verbally digestible format for statements and new options for payment that make it easier for overseas members to join the society. Much of the more mundane society communication now takes place by e-mail, which allows membership dues to be put to better uses in producing the journal and in HAA symposia. Any members with Internet access who have not received the recent annual statement electronically should send their e-mail addresses to the secretary (address inside the front cover).
SHORT COMMUNICATIONS

REPTILES AND AMPHIBIANS OF NGUU NORTH FOREST RESERVE, TANZANIA: A FIRST CONTRIBUTION

Michele Menegoni1, Sebastiano Salvidio2 & David Moyer3

1Museo Tridentino di Scienze Naturali, via Calepina 14, C.P. 393, I-38100 Trento, Italy. 2Dipartimento per lo Studio del Territorio e delle sue Risorse, DIP.TE.RIS. Corso Europa, 26, I-16132 Genova, Italy. 3Wildlife Conservation Society (New York Zoological Society), P.O. Box 936, Iringa, Tanzania

Survey area
Research was conducted from 15th to 23rd February 2002 in Nguu North Forest Reserve, Handeni district, Tanga Region, Tanzania, in an area of about 1 km² centred on 5°28'49"S, 37°28'31"E. Daytime temperatures ranged from 22,5 to 26,5°C, and night temperatures from 18 to 21°C. Relative humidity ranged from 80 to 98%, with highest values recorded during night time. Elevation in the sample area was between 1175 - 1265 m. Habitat was typical dense evergreen submontane forest comprised of multiple dominant tree species, a canopy height of 25 to 40 m and emergents up to 50 m (Lovett, 1993, Seddon et al., 1999).

The Eastern Arc is a chain of isolated massifs stretching from southeast Kenya through south central Tanzania. The abrupt eastern facing slopes of these mountains are covered by dense rainforest, and are well known for their elevated level of biodiversity and endemism (Burgess et al. 1998; Myers et al. 2000). In spite of this, few massifs have been extensively sampled from a biological point of view and many others are lacking even basic checklists (Howell, 2000). To date for instance, no herpetological survey has been carried out in the Nguu mountains that comprise several peaks and ridges running North to South on the eastern Edge of the Maasai Steppe, in northeastern Tanzania. Here we present the first contribution to knowledge of a-diversity in the Nguu North Forest Reserve.

The Nguu North Forest Reserve is the largest of nine forest reserves in the Nguu mountains (Fig. 1) and covers an area of about 14042 ha (Seddon et al., 1999). The climate is oceanic and rainfall is around 1500 mm/year (Lovett, 1993).

Figure 1. Location of the Nguu mountains, Tanzania

Searches were conducted both during the day and by night. Animals were photographed in the field to record their natural coloration and voucher specimens where collected. These were euthanized with ethyl ether and
preserved in 70% alcohol. The keys and species descriptions in Channing (2001); Menegon et al. (2002); Schioetz (1999) and Spawls et al. (2001) were used for species determination in the field and in the laboratory.

When possible, advertising calls of amphibians were recorded using a Sharp MD-MT 877H minidisk and Sony C-76 directional microphone. Calls were analysed using Canary 1.2.4 (Cornell Bioacoustic Workstation) and compared with published (Schioetz, 1999; Channing, 2001) and unpublished sonograms or call descriptions (Channing; Menegon; Moyer unpublished data). All collected specimens, pictures and call recordings were deposited in the Museo Tridentino di Scienze Naturali (MTSN cod.), Trento, Italy.

Annotated list of Amphibians and Reptiles collected in Nguu North Forest Reserve.

Amphibia

Hyperoliidae

Afriralis uluguruensis (Barbour & Loveridge)
Voucher specimens: MTSN 5135, 5136, 5137
An Eastern Arc endemic and forest-dependent species. Several populations are present in the Eastern Arc and these show considerable call variation (Schioetz, 1999; Menegon, unpublished data). The specimens from Nguu also show some morphological variation in comparisons with those in the Udzungwa forests and, thus, require further taxonomic analysis. This species was commonly observed along streams during the night.

Leptopelis flavomaculatus (Günther)
Voucher specimens: MTSN 5167, 5168, 5169

Leptopelis vermiculatus (Boulenger)
Voucher specimens: MTSN 5172, 5173, 5174, 5175

Leptopelis uluguruensis Barbour & Loveridge
Voucher specimens: MTSN 5170, 5171

Hyperolius mitchelli Loveridge
Voucher specimens: MTSN 5159, 5160, 5161

Hyperolius punctulatus (Pfeffer)
Voucher specimens: MTSN 5162, 5163, 5164, 5165

Microhylidae

Hoplophryne rogersi Barbour & Loveridge
Voucher specimens: MTSN 5158
The Nguu record extends this species range inland from a single previously known area, the eastern Usambara massif (Johansson et al. 1998).

Callulina sp.
Voucher specimens: MTSN 5153
Advertisement calls from specimens collected and recorded in Nguu North Forest Reserve appear to belong to an undescribed species (Alan Channing pers. com.). Previous observations on differences in call structure between *Callulina* populations from Mount Mta Forest Reserve in the East Usambara and Ukuaguru mountains were made by Evans et al. (1992).

Probreviceps cf. macrodactylus
Voucher specimens: MTSN 5402

Ranidae

Ptychadena anchietae (Bocage)
Voucher specimens: MTSN 5191

Phrynobatrachus uzungwensis Grandison & Howell
Voucher specimens: MTSN 5187, 5188, 5189, 5190
The occurrence of this species in the Nguu Mountains extends its distribution northward from previous records in the Udzungwa and Uluguru Mountains (Burgess et al., 1998).

Phrynobatrachus natalensis (Smith)
Voucher specimens: MTSN 5184, 5185, 5186

Arthroleptidae

Arthroleptis stenodactylus Pfeffer
Voucher specimens: MTSN 5147, 5148, 5149, 5150, 5151, 5152

Arthroleptis cf. affinis
Voucher specimens: MTSN 5145, 5146

Arthroleptis xenodactyloides (Boulenger)
Voucher specimens: MTSN 5200, 5201, 5202

Reptilia
Gekkonidae
Cnemaspis africana Werner
Voucher specimens: MTSN 5154, 5155, 5156, 5157

Chamaeleonidae
Rhampholeon cf. boulengeri
Voucher specimens: MTSN 5192, 5193, 5194, 5195, 5196, 5197, 5198, 5199
According to the key of Menegon et al. (2002), the pigmy forest chameleons collected in North Nguu Forest Reserve appear very similar to _R. boulengeri_, an east-central African species, known from sporadic records in western Kenya, Uganda, Rwanda and Burundi (Spawls et al., 2002). Scalation and hemipenial morphology of Nguu Forest Reserve specimens have been compared with specimens of _R. boulengeri_ collected in Western Kenya and Rwanda and those conserved in the Alexander Koenig Museum of Bonn, Germany. No differences were detected in the external morphology of these specimens, while the hemipenes of 5 Nguu males showed very similar features but a lower number of horny papillae on the apical horns in comparison with 3 males from Kakamega forest in western Kenya and in Rwanda (8-11 papillae in Nguu specimens versus 12-13 in _R. boulengeri sensu stricto_). Considering the gap between Nguu Mountains and the nearest population of _R. boulengeri_ and our small sample size, molecular analysis of the Nguu population is needed to assess its taxonomic status. It is interesting to note that a previous record of a _boulengeri_-like pigmy chameleon in eastern Tanzania was cited by Spawls et al. (2002).

Scincidae
Leptosiaphos kilimensis Stejneger
Voucher specimens: MTSN 5176, 5177

Mabuya varia Peters

Colubridae
Philothamnus macrops (Boulenger)
Voucher specimens: MTSN 5179
A Tanzanian endemic, previously known from three apparently discrete populations; from Tanga Region inland to the Usambara mountains, from Unguja island in the Zanzibar archipelago and from the Tanzanian coast south to the Rondo Plateau (Spawls et al., 2002). The Nguu population represents the furthest inland record of this species.

Viperidae
Bitis gabonica (Dumeril & Bibron)
This large viper is known in eastern Africa from sporadic records along the Albertine rift to a single record in western Kenya, and along the Tanzanian coast from the Usambara range south to the Ruvuma River (Spawls et al. 2002). The presence of this species in the Nguu Mountains and in the Kilombero Valley, not far from Mang’ula - 07°51’01”S - 36°53’10”E - at 450 m. a.s.l. (Menegon, 1999 pers. obs.), suggests a wider distribution in Tanzania. In Nguu forest an adult female was collected during the day on the forest floor. Local farmers know this species well and it is considered common in cultivated areas along the forest edge.

Summary
To date 22 species, 15 Amphibians and 6 Reptiles have been identified to species. However, some specimens, in particular _Rhampholeon cf. boulengeri_ and _Arthroleptis_ sp. were problematic and are still under investigation. Thus the reported checklist must be considered preliminary. This first contribution to the herpetofauna of Nguu Mountains confirms that several species considered endemic to the Usambara Mountains have a wider distribution. This was already suggested by Evans et al. (1992). In fact, the ranges of three species, _Hoplophryne rogersi_, _Callichthys sp._, _Philothamnus macrops_ and _Bitis gabonica_ were significantly extended by our findings. From a conservation point of view, Nguu North Forest Reserve is considered an important site due to the presence of large portions of undisturbed submontane rain forests that sustain several forest-dependent birds (Seddon et al., 1999). Moreover, several endemic or near endemic amphibians and reptiles are present. However, despite our survey, these forests remain poorly known and deserve much more field efforts.

Acknowledgements.
Research in Tanzania was authorised by COSTECH (permit # 2002-039-ER-98-13) and partially funded by the Museo Tridentino di Scienze Naturali, Trento. Thanks are due to Professor Kim Howell who helped us in many ways during our work. Special thanks to Piero Menegozzo and Giovanni Artuso (CEFA Italia) for helping us to organise our journey from Italy, and to Elia Mulungu who participated in the field survey. Wolfgang Böhme made valuable suggestions and provided the Boulenger’s pigmy chameleons for
comparison. Bill Stanley gave us specimens collected during his small mammal research in the Nguus and Alan Channing aided in the identification of some specimens.

References

NATURAL HISTORY NOTES

African Herp News publishes brief notes concerning the biology of the herpetofauna of the African continent and adjacent regions, including the Arabian peninsula, Madagascar, and other islands in the Indian ocean.

A standard format is to be used, as follows: SCIENTIFIC NAME; Common name (using Bill Branch’s Field Guide to Snakes and other Reptiles of Southern Africa, third edn. 1998, for reptiles; and Passmore & Carruthers’ South African frogs, 1995, for amphibians as far as possible); KEYWORD (this should be one or two words best describing the topic of the note, eg. Reproduction, Avian predation, etc.); the Text (in concise English with only essential references quoted and in abbreviated form); Locality (country, province or state, location, quarter-degree unit, and latitude and longitude if available; elevation above sea level; use metric units); Date (day, month, year); Collector(s); Place of deposition and museum accession number (required if specimens are preserved).

Submitted by: NAME, Address (in parentheses).

REPTILIA

TESTUDINES

TESTUDINIDAE

Geochelone pardalis
Leopard Tortoise

Fire avoidance

According to Boycott & Bourquin (2000. The Southern African tortoise book. Russel Friedman Books, Halfway House, South Africa) one of the greatest threats to tortoises is veld fires with many burnt every year especially in slow burns during daylight hours over the hot summer months when tortoises are most active. An exception to the rule is the Geometric Tortoise (Psammobates geometricus) from the Western Cape which could well be fire adapted (Boycott & Bourquin, op. cit.). Branch (1998 Field guide to snakes and other reptiles of Southern Africa. Struik, Cape Town) mentions that the Leopard Tortoise
(Geochelone pardalis), which is widespread throughout the savanna areas of Southern Africa, including Namibia, succumbs to veld fires.

Whilst fighting a veld fire due west of Windhoek in the foothills of the Kaiser Wilhelm Mountains (Namibia - Highland Savanna; Giess 1971. A provisional vegetation map of South West Africa. Dinteria 4) during the late afternoon in August, an adult Leopard Tortoise was observed avoiding the fire by climbing into a Trumpet Thorn bush (Clathractes alexandri). The tortoise was approximately 30cm off the ground when first noticed and subsequently fell out of the bush after which it was righted and inspected for burn damage before being released. The fire had recently passed by and had consumed the grass cover in the vicinity, although the bush in which the tortoise had taken refuge had not ignited. The tortoise was not damaged during this incident, as far as could be determined, except for watery eyes, possibly caused by the smoke.

From this observation it is clear that tortoises - a Leopard Tortoise in this case - have the ability to avoid fires by climbing into vegetation. This method of fire avoidance would probably be ineffective in hot fires when shrubs/bush would also be consumed by fire.

Submitted by
Peter L. Cunningham (Polytechnic of Namibia, Department of Nature Conservation, P/Bag 13388, Windhoek, Namibia. E-mail: pcunningham@polytechnic.edu.na) and Willie Adank (Polytechnic of Namibia, Department of Nature Conservation, P/Bag 13388, Windhoek, Namibia. E-mail: wadank@polytechnic.edu.na)

REPTILIA
SAURIA

GEKKONIDAE
Pachydactylus turneri
Turner's Thick-toed Gecko

Diet

During a spell of intense termite (Hodotermes mossambicus) activity after rainfall in Windhoek, Namibia, on the third and fifth of December 2002, we observed a feeding frenzy by three species of lizards actively utilizing the termites. The species involved were Machaerina stigmos (Kalahari Tree Skink), Agama aculeata (Ground Agama) and Pachydactylus turneri (Turner's Thick-toed Gecko). The skinks and agamas were the most visible and present in large numbers although the most interesting sighting was that of the gecko. The time that the observations were made (both days) was between 16h00 and 17h00 with sunset only occurring around 19h00 during this time of the year.

Thick-toed Geckos are classified as nocturnal although some of the larger species are often found foraging on prey items from the safety of their shelters during daylight hours (Branch 1998 Field guide to snakes and other reptiles of Southern Africa. Struik, Cape Town). Pachydactylus turneri is one of these large geckos with the individual observed feeding on the termites being an adult male (SVL 85mm & Tail 65mm). The gecko was foraging on the termites in an open parking area approximately 3-4m from the closest suitable cover. This individual actively pursued 18 termites before retreating to cover and then proceeded to prey on a further 18 termites passing it before calling it a day (5/12/2002). A total of 36 termites of approximately 15-20mm in size each were consumed within 5 minutes. Hodotermes mossambicus have previously been identified in the diet of Ptenopus garrulus maculatus, Chondrodactylus angulifer angulifer, Pachydactylus bivitronis, Pachydactylus marmoratus latirostris and Pachydactylus punctatus from the Koomanshoop area in Southern Namibia (Bauer et al. 1989 S Afr. J. Zoo/. 24: 239-243). According to Bauer et al. (op. cit.) geckos might even be able to “predict”, via environmental cues, localized outbreaks of arthropod prey.

The fact that the P. turneri individual observed feeding on H. mossambicus termites in Windhoek was prepared to throw caution to the wind indicated that the benefits of partaking in this exceptional feast outweighed the possible threats it could have encountered away from cover during daylight hours.

Submitted by
Peter L. Cunningham (Polytechnic of Namibia, Department of Nature Conservation, P/Bag 13388, Windhoek, Namibia. E-mail: pcunningham@polytechnic.edu.na) and Willie Adank (Polytechnic of Namibia, Department of Nature Conservation, P/Bag 13388, Windhoek, Namibia. E-mail: wadank@polytechnic.edu.na)
African Herp News publishes brief notes of new geographical distributions (preferably at least 100 km from the nearest published record) of amphibians and reptiles on the African continent and adjacent regions, including the Arabian peninsula, Madagascar, and other islands in the Indian Ocean.

A standard format is to be used, as follows: **Scientific Name**; Common name (for sources, see Natural History Notes); **Locality** (country, province or state, location, quarter-degree unit, and latitude and longitude if available; elevation above sea level; use metric units); **Date** (day, month, year); **Collector(s)**; **Place of deposition and museum accession number** (required if specimens are preserved); **Comments** (including data on the size, colour and taxonomic characters, e.g. Scalation, webbing, especially for taxonomically problematic taxa; and nearest published locality record(s) in km; references to be quoted in the text). Submitted by: **NAME**, Address (in parentheses).

Records submitted should be based on specimens deposited in a recognised collection. New South African province names must be used.

Notes submitted in an incorrect format or style will be returned to the authors.

REPTILIA

Serpentes

Atractaspidae

Micrelaps vaillanti (Mocquard 1888)

Desert black-headed snake

Tanzania, Mwanza Region & District, Mwanza (0234Db) 02°31'S 34°54'E.

After having returned the proofs of my paper (Rasmussen JB 2002 A review of the African members of the genus *Micrelaps* Boettger 1880 (Serpentes Atractaspidae). *Trop. Zool.* 15:71-87), additional Tanzanian specimens of the rare *M. vaillanti* were found in NMW and RMNH, respectively.

A juvenile male (24cm; NMW 27379) without locality but from Deutsch Ostafrika (= Tanzania) has a much lower number of ventral scutes (204 versus 235) and higher number of caudal scutes (26 versus 16) than the female and a lower number of ventrals than that of the single known Tanzanian male (221 scutes; AMNH 67931) from Mto Wa Mbu.

Acknowledgements

These records are part of the results of visits to various museums sponsored by the Danish Research Council in connection with a mapping project of African snakes. I am most grateful to Franz Tiedemann, Naturhistorisches Museum, Wien (NMW) and Marinus Hoogmoed, Nationaal Natuurhistorisch Museum, Leiden (RMNH) for their unfailing hospitality during my visits to their institutions.

Submitted by

Jens Bødker Rasmussen (Zoological Museum University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark; jbrasmussen@zmuc.ku.dk)

The Swahili place name Mto Wa Mbo translates literally as "the river of mosquitos"
Micrelaps vaillanti (RBINH 23480 OB Rasmussen)

COLUBRIDAE

Lamprophis swazicus Schaefer, 1970
Swazi Rock Snake

Juvenile female found at 07h45 under a small, flat rock resting on a large granitic slab, in a rocky grassland area - veld type 43: Northeastern Mountain Grassland (Low & Rebelo 1996. *Vegetation of South Africa, Lesotho and Swaziland*. Department of Environmental Affairs and Tourism, Pretoria). Heavy rains had fallen the previous evening and the area was wet. The specimen was found together with a Spotted House Snake *Lamprophis guttatus* (Smith, 1843) (TM 84363). This is the first record of syntopy between the two species and the first known record of *L. swazicus* in KwaZulu-Natal, extending its range approximately 170 km southwards from Mbabane and Elangeni in Swaziland.

Acknowledgements:
Richard Boycott is thanked for providing information on literature references and locality records for Swaziland.

Submitted by Warren R. Schmidt (Postnet Suite 101, Private Bag X01, East Rand, 1462. schmidtowic@hotmail.com) and Elizabeth Scott (Department of Herpetology, Transvaal Museum, P.O. Box 413, Pretoria, 0001. escorr@nfi.co.za).

LACERTIDAE

Nucras livida Smith, 1838.
Karoo Sandveld Lizard
South Africa, Northern Cape Province. We found two adult specimens between 10:30 am and 11:40 am on the farm Papkuilsfontein (31°19’C, 31°33’26”S, 19°11’27”E, 730m asl), 20 km south of Nieuwoudtville on 12th September 2002. The specimens were collected on sandy soils of the Bokkeveld Group. Vegetation in this area consists of thorny shrubs with few succulents.

Both specimens were similar in colour, being dark with lighter stripes on the back and extensive yellow spots on the flanks. The taxonomic characters are as being described for the genus *Nucras* and *Nucras livida* in Branch (1998 *Field guide to snakes and other reptiles of Southern Africa*. Struik, Cape Town). Snout-vent-length measured 68.3 mm and 69.0 mm respectively. The two specimens were deposited in the Ellerman Museum of the University of Stellenbosch (Museum numbers: USEC/H – 2861 and USEC/H – 2862).

Two more specimens were found along the west coast: one just before Vredendal on the way from Lutzville (31°18’C, 31°38’49”S, 18°26’43”E; specimen deposited in PE Museum) and one south of Vredendal, northeast of Lambert’s Bay, near Koeivleiberg and Elandsvei (31°18’D, 31°54’10”S,
18°29'17"E), with both specimens collected by M. Burger on 13 September 1999.

These records extend the distribution range northwards by approximately 220 km. The nearest published record is 2 km along the road to Vlakte (Rietbokfontein), 14 km north of Kannaland (33°48'S, 20°37'E) (Branch, W. R. and Bauer, A.M. 1995. *Herpetol. Nat. Hist.* 3(1): 47-90). This specimen is in the PE Museum (PEM R7064).

Submitted by
D.A. du Toit and A. Alblas (Department of Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa. E-mail: dadutoit@sun.ac.za; aa2@sun.ac.za)

VARANIDAE

Varanus albigularis

Rock or White-throated Monitor

The Rock Monitor's natural distribution is described as “throughout the savanna and semi-desert regions of the subcontinent” (Branch, 1998:209). In Namibia the distribution is stated as “particularly in the country’s northern, central and eastern regions” Jauch, (2002). The distribution map in Branch (op. cit.) includes much of the Namibian interior although it excludes the northwestern, southwestern and southeastern corners. In this note we are trying to establish the NW range limit within Namibia of *V. albigularis* based on current acceptably supported evidence.

FitzSimons (1938:193) first documented the occurrence at Kamanjab (TM 17256, TM 12785), while Mertens (1955:84) refers to the Kaokoveld without a substantiated locality. TM 48455 from Farm Arendsnes (1929S, 1434E) extended the known range further westwards. Bayless (2002:1645, Fig.2.) shows several records in the NW corner of Namibia but does not supply the supporting references for them. Griffin (Bayless 2002:1665; pers. com.) reports a sighting from Ohopoho (Opuwo) and states that Rock Monitors are especially common in sandy areas towards the east of Namibia. Bayless (op. cit) also provides records of *V. albigularis* on the *V. nilotica* distribution map (2002:1645: Fig.3) and lists erroneous sight and photographic records from Aus Waterhole and Halali Camp - Okerfontein pond in the Etosha National Park, Khorixas-Vingerklip and Farm Quickborn (TM 4548) as Nile monitors.

The identification of FMNH 134127 and MCZUB 134127 from Brown Farm, 7.5 Km south of Omaruru listed as *V. nilotica* (Bayless, 2002:1683) is unacceptable, as there is no permanent river in that area and it must therefore be assumed that they are also *V. albigularis* specimens.

On 28 July 2000 at 10h30 an adult Rock Monitor with an approximate length of 90cm (total length) was observed and video taped in the northwestern Kunene Region of Namibia at Wereldsend (20°13'S, 13°54'E, 793m asl.). This individual was slightly injured behind the left front limb, which seemed to be a recent injury, and was moving at a leisurely pace in a southeasterly direction, occasionally being mobbed by Pied Crows. Wereldsend lies about 35 Km. from he border of the Skeleton Coast Park and approximately 75 Km from the Atlantic Ocean. According to staff who have lived and worked in the area since 1981, no Rock Monitor had ever been seen so far west before. However, Professor F.C.Eloff photographed an adult at Wereldsend in 1976 (Colour slide in Transvaal Museum slide collection).

According to Loutit (pers. com.) Rock Monitors are occasionally sighted in the dry western areas especially after good rains and he even recalls seeing one in the Skeleton Coast Park during the early 1980's. Brain (pers. com.) states that they are scarce in the Kunene Region although occasionally sighted in the Palmwag / Sesfontein area. This is substantiated by a colour slide taken by Professor F.C.Eloff of an individual at Sesfontein in 1977 (Colour slide in the
Transvaal Museum slide collection). In the Etosha National Park, further east, they are quite common (Phillips 1995), especially in the Okaukuejo and Halali areas (Berry, pers. com.), although less common towards the west in the Otjivasandu area (Adank, pers. com., Du Preez, pers.com). Two Rock Monitors were sighted in the Otjivasandu area on 14 October 2002 (pers. obs.). Phillips (1995) mentions that monitors travel over great distances and that the home range of males averages about 10 square miles (25.6 Ha.).

It is possible that Rock Monitors follow ephemeral rivers such as the Springbok (tributary of the Uniab River - Wereldseed locality), Uniab, Khoichab, Ugab, Huab and Hoanib Rivers westward, thus occasionally making their appearance further west than generally accepted. TM 56907 from about 22km due west of Sesfontein in the Ganamub River, 6 Km from the confluence with the Hoanib River (19°10’S, 13°42’E, coll. 2nd August 1983 by E. Erb.) may be an example of this situation (Bauer et al., 1993). They may even occur permanently in these rivers although at low densities and are rarely encountered (Britz, pers. com., Griffin, pers. com.). Above average rainfall during the previous 3 years in parts of the Kunene Region may also have contributed to the range extension of this species westwards into areas not usually deemed prime habitat.

References

Acknowledgements
Our appreciation to the following people for their sightings and/or ideas regarding the distribution of Rock Monitor in northwestern Namibia: Willie Adank, Mark Berry, Mike Brain, Martin Britz, Mike Griffin, Rudi Loutit and Pierre du Preez.

Submitted by
Anton, Wanda & Johan Esterhuizen (P.O. Box 1509, Otjiwarongo, Namibia), Peter L. Cunningham (Polytechnic of Namibia, Department of Nature Conservation, P/Bag 13388, Windhoek, Namibia, Email: pcunningham@polytechnic.edu.na) and Wulf D. Haacke (P.O. Box 413, Transvaal Museum, Pretoria, 0001 South Africa. Email: wm.haacke@absamail.co.za)
GEKKONIDAE

Co/opus wah/bergii wah/bergii Peters, 1869
Kalahari Ground Gecko
Zambia, Southern Province, Kazungula District, Kalamba Station on the old
Zambezi Sawmill Railway (1725DA); 24 November 2002; Paul Van Daele;
Natural History Museum of Zimbabwe NMZB 16974.

Specimen found at a depth of 20 cm in Kalahari sand while excavating a nest
of mole rats (Cryptomys). It is a female measuring 58 + 38 mm. The head is
large, with a blunt snout, as is typical of Co/opus; the claws on the toes are
barely distinguishable. The dorsum is pale brown with darker mottling and
dark speckling on the tail.

This is the first Zambian record for this secretive fossorial species, the nearest
previous record being from Victoria Falls on the Zimbabwe side, about 35 km
Haacke (1998. Afr. Herp News 27: 20) has recorded this species from several
localities in northern Botswana and from near the W bank of the Kwando
River in the Caprivi, the latter locality is about 250 km W of Kalamba Station.
It seems likely that this species will eventually be found in Angola.

Submitted by
Donald G. Broadley (Biodiversity Foundation for Africa, P.O. Box FM 730,
Famona, Bulawayo, Zimbabwe) and Paul Van Daele (P.O. Box 61189,
Livingstone, Zambia).

Pachydactylus fasciatus Boulenger 1888
Banded thick-toed gecko
Namibia, Karas Region, Karasburg District, Warmbad (2818BC), 28°26'S

This juvenile specimen represents the southernmost record for the species. All
earlier confirmed records of P. fasciatus are from the Erongo and Kunene
Afr. 39:1-5), where it is locally abundant under stones on the ground or, more
rarely, under the bark of fallen trees (pers. obs.). The veracity of an older
record from Kuibis [Guibes] (2616DB) had previous been questioned (Bauer
& Branch, op. cit.), but the new Warmbad record lends credence to the
possibility that P. fasciatus does occur at Kuibis and perhaps ranges
continuously from northwestern Namibia almost to the Orange River. Records from the Northern and Western Cape Provinces of South Africa,
however, are all the result of mis-identifications, and an old record from
Walvis Bay (2214CD) probably reflects the point of shipment of the specimen
rather than its point of collection (Bauer & Branch, op. cit.). Warmbad is 270
km southeast of the outlying Kuibis locality and 750 km south-southeast of
the established contiguous range of the species. Despite specific climatic,
physiographic, and vegetational differences, both the northern and southern
localities of P. fasciatus fall within, or along the more mesic edge of, the Nama-

Submitted by
Aaron M. Bauer (Department of Biology, Villanova University, 800 Lancaster
Avenue, Villanova, Pennsylvania 19085, USA; aaron.bauer@villanova.edu)
and Trip Lamb (Department of Biology, East Carolina University; Greenville,
North Carolina 27858, USA; lamba@mail.ecu.edu)
HERPETOLOGICAL SURVEYS

African Herp News publishes sparsely annotated species lists resulting from local surveys of amphibians and reptiles on the African continent and adjacent regions, including the Arabian peninsula, Madagascar, and other islands in the Indian Ocean.

The area surveyed may be of any size but should be a defined geographic unit of especial relevance to the herpetological community. For example, surveys could address declared or proposed conservation reserves, poorly explored areas, biogeographically important localities or administrative zones. The relevance of survey results should be judged by the extent that these records fill distributional gaps or synthesise current knowledge.

Survey results should be presented in the following format: SURVEY AREA; Survey Locality (country, province or state, location, Quarter-Degree loci, or bounding latitude and longitude); Dates (day, month, year); a brief statement of Relevance; and the SPECIES LIST, including Scientific names, site / habitat information; evidence (including museum registration numbers and location of vouchers); and any further comments (where required). The note should end with a Summary statement, followed by Acknowledgements, cited References (where required) and the names and addresses of authors.

As far as possible survey records should be based on accessible and verifiable evidence (specimens deposited in public collections, photos submitted illustrating diagnostic features, call recordings and sonograms, or DNA sequences accessioned into publicly accessible databases).

SURVEY AREA: Cockscomb (T'Numqa) mountain
Survey Locality: South Africa, Eastern Cape Province, 3324DB
Dates: 7th-10th December 2002
Relevance: At 1758m Cockscomb is the highest peak in the south-eastern Eastern Cape, towering over surrounding peaks (1100-1500m) in the Grootwinterhoek range. The rugged southern side of the mountain is managed by Eastern Cape Department of the Environment as part of the Baviaanskloof Conservation Area and falls within both the Cape Floral Region World Heritage nomination area and the proposed Baviaanskloof Mega-Reserve. A small portion on the northern side is under the custodianship of the Mountain Club of South Africa (MCSA) with the remainder managed by private landholders. The vegetation of Cockscomb includes Alpine, Mesic and Restiid subtypes of Montane Fynbos (Boshoff A, Cowling R & Kerley G 2000. The Baviaanskloof Conservation Area. Report No. 27, Terrestrial Ecology Research Unit, University of Port Elizabeth)

(Abbreviations: NMB, National Museum, Bloemfontein; SAFAP, South African Frog Atlas Project. Point localities are given as longitude and latitude, in decimal degrees, and elevation above sea level. All records have been accessioned into the Cape Floristic Region biodiversity database maintained by Western Cape Nature Conservation, Jonkershoek)

SPECIES LIST

Amphibia
Afrana fuscigula
Adults and tadpoles observed in a stream on the southern side, (voucher specimens: NMB A7003, 1 tadpole: 24.80944E, -33.57500N, 1089m; NMB A7004, 4 tadpoles: 24.81167E, -33.57917N, 900m).

Breviceps adspersus penteri
Abundant, calling continuously during misty, overcast weather. The brief, trilled call resembles that of B. adspersus penteri.

This area is at the western distributional limit for this species, at high altitude in comparison to nearby records and in unusual habitat (montane fynbos), thus the specific status of populations in the eastern Cape Fold Mountains requires confirmation (Audio recordings submitted to SAFAP, record MC1578: 24.80278E, -33.57222N, 1279m)

Heleophryne helilitti
Tadpoles abundant in an upper tributary of the Groot River flowing through mesic fynbos in a deep kloof on the southern slopes of the Grootwinterhoek range. The extreme SE corner of 3324DB includes a previously known site, Komiteebrug on the Diepkloof River, Elandsberg. Nonetheless this is a significant finding as it extends the known range of this Critically Endangered species by over 25km to a substantial area of undisturbed habitat on a separate mountain range. Identity confirmed by DNA sequencing from tadpole tail samples; a sequence from this site was identical to that from the type locality (Geelhoutboom River, 3325CC).

These differ by more than 1.4%, at the conservative 16S mtDNA gene, from all other described species (Sequence "HhCC" submitted to GenBank;
Reptilia

Acontias orientalis
In soil under a small, flat rock in restioid montane fynbos (specimen & genetic sample under study by SR Daniels, Stellenbosch University: collected at 24.79139E, -33.56861N, 1364m)

Afroedura sp.
Two large Afroedura observed in a vertical crack, in an outcrop of Table Mountain Sandstone. One of these was collected as a voucher specimen. These appear to be an undescribed species previously collected in the Baviaanskloof area, currently under study by WR Branch (voucher specimen: NMB R8457; 24.79356E, -33.57139N, 1305m)

Agama atra
(observational records only: 24.81611E, -33.55750N, 950m; 24.81417E, -33.56611N, 1000m; 24.79167E, -33.56806N, 1296m)

Brachypodion taeniabronchium
Two individuals encountered on the northern slopes in the late afternoon after a hot sunny day (18:00 – 19:27, 7th December 2002). Both were active, climbing on rocks and a dead Leucodendron bush, respectively, despite encroaching twilight. Tail-tip samples were taken for DNA sequence analysis (KA Tolley – A distribution note on DNA based assessment and distribution of this species has been submitted for the next issue of African Herp News) (24.79472E, -33.57083N, 1225m)

Cordylus microlepidotus
(voucher specimen: NMB R8456; 24.78611E, -33.56833N, 1550m)

Pedioplanis burchelli
(voucher specimen: NMB R8459; 24.80639E, -33.57222N, 1155m; observational record 24.79167E, -33.56806N, 1290m)

Tropidosaura gularis
(voucher specimen: NMB R8458; 24.79361E, -33.57139N, 1308m)

Naja nivea

A decaying, road-killed adult individual was observed in nama karoo vegetation near the base of the mountain (24.85889E, -33.51250N, 460m)

Summary
Higher areas within the eastern Cape Fold Mountains are poorly surveyed. This brief survey uncovered range extensions for two Critically Endangered species and a further record for an undescribed Cape Fold Mountain endemic Afroedura. Both the Brachypodion and Heleophryne records were confirmed using DNA sequence data through comparison with all other described species, with voucher sequences submitted to the GenBank database (http://www.ncbi.nlm.nih.gov/). Future surveys are likely to extend the distribution of these taxa on the Grootwinterhoek range and to discover further range extensions for montane fynbos species within this transitional area between winter and summer rainfall.

Acknowledgements
To Alvin Page for field assistance, to members of the Eastern Province section of the MCSA for suggestions on routes around the mountain, and to the owners of the farm Willow River for access to the jeep track east of Cockscomb.

Submitted by
Michael Cunningham (Dept. Genetics, University of Pretoria, Pretoria 0001, South Africa), Catherine Lys Henderson and Krystal A Tolley (Dept. Zoology, Stellenbosch University, Private Bag X1, Matieland 7602 South Africa)
RECENT AFRICAN HERPETOLOGICAL LITERATURE: 24

W.R. Branch
Port Elizabeth Museum, P.O. Box 13147, Humewood 6013, South Africa

This survey covers the period 2002 to present, with a few earlier, overlooked papers. For brevity, no articles in any HAA publication are included, neither are peripheral publications using Xenopus laevis (or any other African species) as a model in biochemical or developmental studies, etc. To assist members, and where known, the following annotations are given: the distribution date (in brackets) if known to differ from the volume year; an English title for papers published in a foreign language; relevant African details from general articles; and the names of new taxa. Where given in the original article an email address for an author is retained here.

Deban, S.M. & Olson, W.M. 2002. Biomechanics: Suction feeding by a tiny predatory tadpole. Nature 420: 41-42. (study details of the feeding mechanics of Hymenochirus boettgeri tadpoles, unique among frogs and is strikingly convergent with that used by teleost fishes.)

Griffith, H., Ngo, A. & Murphy, R.W. 2000. A cladistic evaluation of the cosmopolitan genus *Emoecus* Wiegmann (Reptilia, Squamata,

Rage, J.C. & Werner, G. 1999. Mid-Cretaceous (Cenomanian) snakes from Wadi Abu Hashim, Sudan: the earliest snake assemblage. *Palaeontol. afr.* 35: 85-110. (although fossil snakes are not usually covered in these reviews this paper is too important to omit)

Parker, 1930 - (Sauria: Agamidae: Leiopeltidae) with comments on intraspecific variability and lifestyle.

Books, Theses And Reports

Book Reviews

Parker, I. 1930 - (Sauria: Agamidae: Leiolepididae) with comments on intraspecific variability and lifestyle.

NEWS AND ANNOUNCEMENTS

7th HAA Symposium, 5-8 October 2004, Port Elizabeth

The next HAA Symposium will be held on the 5th – 8th October 2004 at the Pine Lodge Resort and Conference Centre, Cape Recife, Port Elizabeth, South Africa. This promises to be a great location – 9 out of the 11 southern African biomes meet within 100km of Port Elizabeth (excluding only succulent karoo and desert). Cape Recife itself includes thicket, fynbos, freshwater and marine biomes. The symposium is being organised by Bill Branch. Check the HAA website for updates and contact details (http://www.wirs.ac.za/haa/2004conf.htm).

5th World Congress of Herpetology, 20-27 November 2005, Cape Town

World Congress of Herpetology meetings are among the largest gatherings of herpetologists on earth and are a great opportunity to learn more about the fauna of distant lands (or seas) and to tell the world about herps at home. In addition to the scientific conference these meetings are accompanied by exhibitions, markets, displays and tours. Congresses are held every three to five years, with previous meetings in Canterbury, UK (1989); Adelaide, Australia (1993/1994); Prague, Czech Republic (1997) and Bentota, Sri Lanka (2001). The congress in Cape Town will be the largest meeting thus far in the history of African herpetology.

"The objectives of the World Congress of Herpetology are to promote international interest, collaboration and co-operation in herpetology. These are to be achieved by holding periodic international congresses of herpetology, by establishing specialist committees, by serving as the Section of Herpetology of the International Union of Biological Sciences and by undertaking or encouraging such other activities as will promote these objectives." (constitution of the World Congress of Herpetology)

Preliminary information on the 5th World Congress of Herpetology is available from the HAA website (http://www.wirs.ac.za/haa/5WHC2005.pdf), with more general information on the co-ordinating organisation from (http://www.gu.edu.au/school/asc/WHCWeb/main.html).

Important notice to HAA members

The committee of the Herpetological Association of Africa has decided that as from the beginning of next year (2004) all overseas members and African members north of the equator will receive their newsletters and journals by air mail. These members will therefore receive HAA publications about two weeks after posting, rather than after three months, which was the case when surface mail was used. Postage rates will be monitored and the system re-evaluated on an annual basis.
HERPETOLOGICAL ASSOCIATION OF AFRICA

INCOME STATEMENT
for the year ended 28 February 2002

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest</td>
<td>2,910</td>
<td>3,335</td>
</tr>
<tr>
<td>Sale of journals</td>
<td>3,885</td>
<td>6,276</td>
</tr>
<tr>
<td>Subscriptions</td>
<td>22,259</td>
<td>29,816</td>
</tr>
<tr>
<td>Symposium</td>
<td>9,150</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>38,205</td>
<td>38,427</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expenses</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35,057</td>
<td>48,846</td>
</tr>
<tr>
<td>Audit fees</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>Proceedings</td>
<td>0</td>
<td>400</td>
</tr>
<tr>
<td>Congo Book</td>
<td>0</td>
<td>2,000</td>
</tr>
<tr>
<td>Journals</td>
<td>29,422</td>
<td>35,291</td>
</tr>
<tr>
<td>Newsletters</td>
<td>3,284</td>
<td>1,441</td>
</tr>
<tr>
<td>Bank charges</td>
<td>21</td>
<td>98</td>
</tr>
<tr>
<td>Office expenses</td>
<td>5,579</td>
<td>6,846</td>
</tr>
</tbody>
</table>

Net (deficit)/surplus for the year: 2,718 (8,420)

HERPETOLOGICAL ASSOCIATION OF AFRICA

BALANCE SHEET - 28 February 2002

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funds Employed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accumulated funds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balance at beginning of year</td>
<td>65,015</td>
<td>73,435</td>
</tr>
<tr>
<td>Net (deficit)/surplus for the year</td>
<td>2,718</td>
<td>(8,420)</td>
</tr>
<tr>
<td></td>
<td>67,734</td>
<td>65,016</td>
</tr>
</tbody>
</table>

Employment of funds

Current assets		
UBS - Durban	49,027	49,041
Standard Bank - Bloemfontein	19,107	17,896
Less:	69,034	66,937

Current liabilities		
Accounts payable	1,300	1,921
	1,300	1,921

| Net current assets | 67,734 | 65,016 |

AFRICAN MEMBERSHIP

ORDINARY MEMBERSHIP
1 year membership R125.00. Submit in Rand
3 year membership R335.00. Submit in Rand

SCHOLAR:
1 year membership R90.00. Submit in Rand.

OVERSEAS MEMBERSHIP

DOLLAR PAYMENTS
1 year membership $40.00. Submit in US$ by personal cheque, money order or credit card payment (see below).
3 year membership $100.00. Submit in US$ by personal cheque, money order or credit card payment (see below).

Note: Please, no U.S. “postal” money orders, US$ “Eurocheques” or Rand Eurocheques. Members in Europe should submit the Euro equivalent by Eurocheque.

CREDIT CARD PAYMENTS
Credit card payments in US$ may be made via Bibliomania (http://www.herpit.com) by contacting Mr. Breck Bartholomew (Breck@herpit.com). When using this option please quote your surname and HAA reference number (available from the secretary) as the transaction reference, and state that it is a HAA membership payment.

RAND PAYMENTS FROM OVERSEAS
1 and 3 year memberships - Rand equivalent of US$ rate payable by bankers draft or money order (NOT postal order).

Owing to numerous banking problems, members are kindly requested not to submit payments directly to any Building Society or Bank Account. All payments should be made out to the Herpetological Association of Africa and be submitted directly to:

MS ROSE SEPHTON-POULTNEY
HERPETOLOGICAL ASSOCIATION OF AFRICA
ANIMAL, PLANT & ENVIRONMENTAL SCIENCES,
UNIVERSITY OF THE WITWATERSRAND,
PRIVATE BAG 3, WITS 2050, SOUTH AFRICA
EMAIL: haasec@gecko.biol.wits.ac.za

COVER ILLUSTRATION: Natal Ghost Frog, Heleolype natalensis, at Mt. Sheba Private Nature Reserve (2430Dc), Mpumalanga, South Africa. Photo: Anton Linstrom